Research and Validation of Ultrasonic Guided Wave for Corrosion Detection of Steel Piles in Wharves

XIA Tian, ZHANG Zhiguo, SU Qi, SI Changru, GUO Xiang, SONG Pengyuan, HU Yiteng, WANG Ning

Equipment Environmental Engineering ›› 2026, Vol. 23 ›› Issue (1) : 123-129.

PDF(3375 KB)
PDF(3375 KB)
Equipment Environmental Engineering ›› 2026, Vol. 23 ›› Issue (1) : 123-129. DOI: 10.7643/ issn.1672-9242.2026.01.014
Key Projects Equipment

Research and Validation of Ultrasonic Guided Wave for Corrosion Detection of Steel Piles in Wharves

  • XIA Tian1, ZHANG Zhiguo1, SU Qi1, SI Changru1, GUO Xiang2, SONG Pengyuan1, HU Yiteng3, WANG Ning3*
Author information +
History +

Abstract

To address the limitations in the traditional corrosion detection means for steel pipe piles in Chinese wharves, the work aims to use ultrasonic guided wave detection technology to inspect the corrosion condition of steel piles at the wharf. The ultrasonic guided wave corrosion detection procedure was optimized for the application environment of wharf steel piles, and the ultrasonic guided wave analysis signal was obtained. The ultrasonic guided wave detection parameters were adjusted to improve the resolution of the ultrasonic guided wave signal, so as to realize the technological application of ultrasonic guided wave detection on wharf steel piles. After the detection, the accuracy of the detection was verified through direct measurement with tapes and underwater robots. In the process of ultrasonic guided wave detection of steel piles at the LNG terminal in the North Sea, after optimizing and comparing the data, it was found that: in the case of using a 64 kHz adapter and 25 dB gain strength in the system, there were obvious characteristic peaks in the detection of steel piles, and the error between the distance measured by ultrasonic guided wave and validation means was between 1.3% and 2.2%, which was of high accuracy. Ultrasonic guided wave technology can detect corrosion problems in time, avoid risks, and provide new ideas for corrosion detection of steel pipe piles in wharves.

Key words

ultrasonic guided waves / magnetostriction / corrosion detection / steel pile / nondestructive testing / signal analysis

Cite this article

Download Citations
XIA Tian, ZHANG Zhiguo, SU Qi, SI Changru, GUO Xiang, SONG Pengyuan, HU Yiteng, WANG Ning. Research and Validation of Ultrasonic Guided Wave for Corrosion Detection of Steel Piles in Wharves[J]. Equipment Environmental Engineering. 2026, 23(1): 123-129 https://doi.org/10.7643/ issn.1672-9242.2026.01.014

References

[1] 李志农, 淦文建, 龙盛蓉, 等.磁致伸缩超声导波检测的研究进展[J].南昌航空大学学报(自然科学版), 2020, 34(3): 18-24.
LI Z N, GAN W J, LONG S R, et al.Research Progress of Magnetostrictive Ultrasonic Guided Wave Detection[J].Journal of Nanchang Hangkong University (Natural Sciences), 2020, 34(3): 18-24.
[2] 杨斌, 胡超杰, 轩福贞, 等.基于超声导波的压力容器健康监测Ⅰ: 波传导行为及损伤定位[J].机械工程学报, 2020, 56(4): 1-10.
YANG B, HU C J, XUAN F Z, et al.Structural Health Monitoring of Pressure Vessel Based on Guided Wave Technology.Part Ⅰ: Wave Propagating and Damage Localization[J].Journal of Mechanical Engineering, 2020, 56(4): 1-10.
[3] LING E H, ABDUL RAHIM R H.A Review on Ultrasonic Guided Wave Technology[J].Australian Journal of Mechanical Engineering, 2020, 18(1): 32-44.
[4] SUN Z Q, DU H J.Estimation of the Dispersion Curves of Pipe Guided Waves by Field Measurement[J].Mechanical Systems and Signal Processing, 2020, 140: 106693.
[5] 姚文胜, 王锋淮, 叶宇峰, 等.基于磁致伸缩超声导波B扫成像技术的大直径管道腐蚀检测[J].轻工机械, 2023, 41(2): 99-104.
YAO W S, WANG F H, YE Y F, et al.Application of Large Diameter Pipeline Corrosion Detection Based on Magnetostrictive Ultrasonic Guided Wave B-Scan Imaging Technology[J].Light Industry Machinery, 2023, 41(2): 99-104.
[6] 杨宁祥, 谢小娟.浅谈磁致伸缩超声导波检测技术的应用[J].特种设备安全技术, 2020(1): 59-60.
YANG N X, XIE X J.Application of Magnetostrictive Ultrasonic Guided Wave Detection Technology[J].Safety Technology of Special Equipment, 2020(1): 59-60.
[7] 何邦源.基于磁致伸缩效应的超声导波检测系统的设计研究[D].南昌: 南昌航空大学, 2018.
HE B Y.Design and Research of Ultrasonic Guided Wave Detection System Based on Magnetostrictive Effect[D].Nanchang: Nanchang Hangkong University, 2018.
[8] 陈建锋.基于磁致伸缩效应的锚杆质量无损检测数值方法研究[D].石家庄: 石家庄铁道大学, 2017.
CHEN J F.Numerical Methods Research Based on Magnetostrictive Effect of Bolt Quality Nondestructive Testing[D].Shijiazhuang: Shijiazhuang Tiedao University, 2017.
[9] 田利, 徐志鹏, 谢申, 等.基于磁致伸缩超声导波技术的管道局部腐蚀检测研究[J].石油化工设备, 2015, 44(6): 16-21.
TIAN L, XU Z P, XIE S, et al.Experimental Study of Magnetostrictive Ultrasonic Guided Wave for Pipeline Corrosion Testing[J].Petro-Chemical Equipment, 2015, 44(6): 16-21.
[10] 王观军, 杨勇, 刘晶姝, 等.基于磁致伸缩效应的超声导波技术导管架腐蚀检测试验[J].腐蚀与防护, 2011, 32(8): 642-645.
WANG G J, YANG Y, LIU J S, et al.Experiment of Jacket Corrosion Detection by Ultrasonic Guided Wave Based on Magnetostrictive Effect[J].Corrosion & Protection, 2011, 32(8): 642-645.
[11] DUAN W B, KIRBY R.Guided Wave Propagation in Buried and Immersed Fluid-Filled Pipes: Application of the Semi Analytic Finite Element Method[J].Computers & Structures, 2019, 212: 236-247.
[12] 马骐, 白冰洁, 张丹富, 等.基于超声导波的埋地管道损伤识别研究[J].地震工程与工程振动, 2021, 41(5): 134-143.
MA Q, BAI B J, ZHANG D F, et al.Research on Damage Identification of Buried Pipeline Based on Ultrasonic Guided Wave[J].Earthquake Engineering and Engineering Dynamics, 2021, 41(5): 134-143.
[13] WANG X J, TSE P W, MECHEFSKE C K, et al.Experimental Investigation of Reflection in Guided Wave-Based Inspection for the Characterization of Pipeline Defects[J].NDT & E International, 2010, 43(4): 365-374.
[14] 程载斌, 王志华, 张立军, 等.管道超声纵向导波裂纹检测数值模拟[J].应用力学学报, 2004, 21(4): 76-79.
CHENG Z B, WANG Z H, ZHANG L J, et al.Numerical Simulation of Crack Detection in Pipes Using Ultrasonic Longitudinal Guided-Wave[J].Chinese Journal of Applied Mechanics, 2004, 21(4): 76-79.
[15] 程载斌.利用超声导波进行管道裂纹检测的数值模拟和实验研究[D].太原: 太原理工大学, 2004.
CHENG Z B.Numerical Simulation and Experimental Investigation on Crack Detection in Pipes Using Ultrasonic Guided Waves[D].Taiyuan: Taiyuan University of Technology, 2004.
[16] 他得安, 刘镇清.超声导波频散特性与管材内径-壁厚比的关系[J].复旦学报(自然科学版), 2003, 42(1): 7-13.
TA D A, LIU Z Q.Relationship between Dispersive Characteristics of Ultrasonic Guided Waves and Inner-Radius-Thickness Ratio of Pipes[J].Journal of Fudan University (Natural Science), 2003, 42(1): 7-13.
[17] 他得安, 易勇, 刘镇清.传播距离对管中导波传播特性的影响[J].无损检测, 2003, 25(11): 553-556.
TA D A, YI Y, LIU Z Q.Influence of Propagation Distance on the Characteristics of Ultrasonic Guided Wave Propagation in Pipes[J].Nondestructive Testing, 2003, 25(11): 553-556.
[18] 他得安, 刘镇清, 田光春.超声导波在管材中的传播特性[J].声学技术, 2001, 20(3): 131-134.
TA D A, LIU Z Q, TIAN G C.Propagation Characteristics of Ultrasonic Guided-Waves in Pipes[J].Technical Acoustics, 2001, 20(3): 131-134.
[19] 他得安, 王威琪, 汪源源, 等.管道导波检测中激发频率的选择及灵敏度分析[J].无损检测, 2005, 27(2): 83-86.
TA D A, WANG W Q, WANG Y Y, et al.Excitation Frequency Choice and Sensitivity Analysis in the Inspection of Pipe with Ultrasonic Guided Waves[J].Nondestructive Testing, 2005, 27(2): 83-86.
[20] 孙广开, 焦阳, 李光海, 等.超声导波管道缺陷检测数值模拟[J].河北工业科技, 2010, 27(1): 18-21.
SUN G K, JIAO Y, LI G H, et al.Numerical Simulation of Defect Detection in Pipes Using Ultrasonic Guided Waves[J].Hebei Journal of Industrial Science & Technology, 2010, 27(1): 18-21.
[21] 孙广开.管状结构中超声导波检测特性数值模拟[D].石家庄: 河北科技大学, 2009.
SUN G K.Study on the Numerical Simulation Method and Detection Characters of Ultrasonic Guided Waves in Cylindrical Structures[D].Shijiazhuang: Hebei University of Science and Technology, 2009.
[22] 刘伟成, 张路根, 胡智, 等.海洋石油静电脱水压力容器的超声导波检测[J].无损检测, 2012, 34(2): 31-34.
LIU W C, ZHANG L G, HU Z, et al.Guided Wave Ultrasonic Testing of Marine Oil Electrostatic Dehydration Pressure Vessel[J].Nondestructive Testing Technologying, 2012, 34(2): 31-34.
[23] 何友益.胜利浅海平台导管架导波检测技术的研究及应用[D].东营: 中国石油大学(华东), 2015.
HE Y Y.Research and Application on Shengli Shallow Water Platform Jacket Detection Technology[D].Dongying: China University of Petroleum (Huadong), 2015.
[24] 黄启人, 孔龙, 李家兴, 等.MsS低频超声导波检测技术在压力容器检测中的应用实践[J].中国设备工程, 2019(23): 73-75.
HUANG Q R, KONG L, LI J X, et al.Application Practice of MsS Low-Frequency Ultrasonic Guided Wave Detection Technology in Pressure Vessel Detection[J].China Plant Engineering, 2019(23): 73-75.
[25] 孙尧尧.MsS超声导波检测技术在海洋石油管道腐蚀检测中的应用[J].中国石油和化工标准与质量, 2018, 38(5): 37-38.
SUN Y Y.Application of MsS Ultrasonic Guided Wave Detection Technology in Corrosion Detection of Offshore Oil Pipelines[J].China Petroleum and Chemical Standard and Quality, 2018, 38(5): 37-38.
[26] 宋慧超.基于压电超声导波的长距离管道监测系统设计与实现[D].济南: 山东大学, 2024.
SONG H C.Design and Realization of Long-Distance Pipeline Monitoring System Based on Piezoelectric Ultrasonic Guided Waves[D].Jinan: Shandong University, 2024.
[27] LEINOV E, LOWE M J S, CAWLEY P.Investigation of Guided Wave Propagation and Attenuation in Pipe Buried in Sand[J].Journal of Sound and Vibration, 2015, 347: 96-114.
PDF(3375 KB)

Accesses

Citation

Detail

Sections
Recommended

/